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ABSTRACT

Seasonal prediction skill of SSTs from coupled models has considerable spatial variations. In the tropics,

SST prediction skill in the tropical Pacific clearly exceeds prediction skill over theAtlantic and IndianOceans.

Such skill variations can be due to spatial variations in observing system used for forecast initializations or

systematic errors in the seasonal prediction systems, or they could be a consequence of inherent properties of

the coupled ocean–atmosphere system leaving a fingerprint on the spatial structure of SST predictability. Out

of various alternatives, the spatial variability in SST prediction skill is argued to be a consequence of inherent

characteristics of climate system. This inference is supported based on the following analyses. SST prediction

skill is higher over the regions where coupled air–sea interactions (or Bjerknes feedback) are inferred to be

stronger. Coupled air–sea interactions, and the longer time scales associated with them, imprint longer

memory and thereby support higher SST prediction skill. The spatial variability of SST prediction skill is also

consistent with differences in the ocean–atmosphere interaction regimes that distinguish between whether

ocean drives the atmosphere or atmosphere drives the ocean. Regions of high SST prediction skill generally

coincide with regions where ocean forces the atmosphere. Such regimes correspond to regions where oceanic

variability is on longer time scales compared to regions where atmosphere forces the ocean. Such regional

differences in the spatial characteristics of ocean–atmosphere interactions, in turn, also govern the spatial

variations in SST skill, making spatial variations in skill an intrinsic property of the climate system and not an

artifact of the observing system or model biases.

1. Introduction

Sea surface temperatures (SSTs) are an important

factor influencing climate variations over the globe. SST

variability in the tropical Pacific associated with El

Niño–Southern Oscillation (ENSO) influences weather

and climate worldwide. Since the first dynamical pre-

dictions of SSTs associated with ENSO variability three

decades ago (Cane et al. 1986), the ability of dynamical

models to predict ENSO has improved significantly, and

ENSO SSTs are now successfully predicted several

seasons ahead (e.g., Ji et al. 1994; Zhang et al. 2003;

Chen et al. 2004; Jin et al. 2008; Kirtman and Min 2009;

Zhu et al. 2012a; Xue et al. 2013). In addition, dynamical

seasonal predictions based on coupled models also

predict SSTs in other ocean basins, and skill in predicting

those SSTs, such as in the tropical IndianOcean (e.g., Luo

et al. 2007; Zhu et al. 2015) and tropical Atlantic Ocean

(e.g., Hu and Huang 2007) and the extratropical oceans,

including the North Atlantic (e.g., Hu et al. 2013), the

North Pacific (e.g., Hu et al. 2014), and the southern

subtropical Pacific (e.g., Guan et al. 2014), has also been

documented.

Across different ocean basins, however, seasonal

prediction systems demonstrate considerably different

skill in the prediction of SSTs. Over the tropics, pre-

diction skill of SSTs is clearly higher in the equatorial

Pacific than in the Atlantic and Indian Oceans (Fig. 1).

The underlying reasons of the spatial variability in SST

skill are yet to be well understood: Is the regional con-

trast in prediction skill an intrinsic property of the cli-

mate system, or an artifact of the present state of the

observing and prediction systems? It is possible that the

lower skill in the tropical Atlantic and IndianOceans is aCorresponding author: Dr. Jieshun Zhu, jieshun.zhu@noaa.gov
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consequence of larger forecast errors due to 1) lack of

observations needed to adequately initialize the state of

the ocean or 2)model biases that could either influence the

ingest of observational data or influence the utility of the

assimilated observational data early during the forecast

(e.g., resulting from initial shocks).

In this study, we also investigate another possibility

for the spatial variability in SST prediction skill. We

propose that the spatial variability in skill represents an

inherent property of the climate system. The reasons for

the spatial variability in skill are imbedded in the regional

variations of 1) coupled ocean–atmosphere interactions

and 2) regimes of ocean–atmosphere interactions. Re-

gional characteristics in these two properties of the

ocean–atmosphere system then also govern the inherent

predictability of SSTs and impart their signature as re-

gional variations in the prediction skill. The rest of the

paper is arranged as follows. The model, experimental

design, and datasets are described in the next section.

Section 3 presents our analyses.A summary and discussion

are given in section 4.

2. Model, experiments, and datasets

The model (referred to as CFSv2L) used in this study

is a variant of the NCEP CFSv2 (Saha et al. 2014) with

lower horizontal resolutions in both atmospheric and

oceanic components. In CFSv2L, the ocean model is the

GFDL MOM version 4, which is configured for the

global ocean with a horizontal grid of 18 3 18 poleward
of 308S and 308N and meridional resolution increasing

gradually to 0.338 between 108S and 108N. The vertical

coordinate is geopotential height z with 40 levels (27

of them in the upper 400m), with maximum depth of

approximately 4.5km. The atmosphericmodel ofCFSv2L

is the Global Forecast System, which has horizontal res-

olution at spectral T62 truncation, and 64 vertical levels

in a hybrid sigma–pressure coordinate. The oceanic and

atmospheric components of CFSv2L exchange surface

momentum, heat, and freshwater fluxes, as well as SSTs,

every 60min.

The spatial variability in SST skill is documented with

the hindcast experiments described in Zhu et al. (2017).

In the hindcasts, CFSv2L is initialized by a simple

scheme in which SST is the only observed information

applied to derive ocean initial states and no subsurface

ocean observations are used. Specifically, six CFSv2L

nudging integrations, differing by their initial conditions,

were conducted with model forecast SSTs nudged to the

observational counterpart. At the start of integrations,

six initial conditions differ in ocean only, and are taken

from the CFSR (Saha et al. 2010) ocean states at 0000

UTC 30 and 31 December 1980 and 1–3 January 1981,

whereas the atmospheric and land initial conditions all

use their CFSR states at 0000 UTC 1 January 1981. By

redating all the initial conditions to 1 January 1976,

six CFSv2L runs are integrated forward with model

predicted SSTs nudged to the observed daily SSTs. The

restoring time scale is chosen as 3.3 days, following our

previous work with CFSv1 (Wang et al. 2013; Kumar

et al. 2014). The observed daily SSTs are interpolated

from the monthly National Oceanic and Atmospheric

Administration (NOAA) Optimum Interpolation SST

(OISST) version 2 (Reynolds et al. 2002) SSTs for the

period after 1982, and from the ERSST.v3 (Smith et al.

2008) before 1982. The SST-nudged CFSv2L integra-

tions are referred to as CFSv2L_nudg.

From the restart files saved during CFSv2L_nudg,

hindcasts are next conducted starting from the first day of

each January, April, July, and October during 1982–2010

FIG. 1. Distribution of anomaly correlations between observed and predicted SST anomalies byHCST_CFSv2L_

nudg at lead times of (a) 0, (b) 1, (c) 2, and (d) 3 months. The hindcasts start from January, April, July, andOctober

initial conditions during 1982–2010.
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and last for eight months. The set of hindcasts is referred

to as HCST_CFSv2L_nudg. The difference between

CFSv2L_nudg andHCST_CFSv2L_nudg is that, whereas

in the former observed SSTs are used throughout the

integrations, for the latter the observed SST information

is not used beyond the initial time.

The predicted SSTs are validated against the analyzed

(observed) SSTs from OISSTv2 (Reynolds et al. 2002)

and document the spatial variability in skill in predicting

SSTs. Other monthly datasets used for diagnostics in-

clude precipitation data from NOAA’s Climate Pre-

diction Center (CPC) Merged Analysis of Precipitation

(CMAP) (Xie and Arkin 1997), 10-m zonal winds from

the CFSR (Saha et al. 2010), and the subsurface ocean

fields from the NCEP Global Ocean Data Assimilation

System (GODAS; Behringer 2007). All diagnostics are

conducted over 1982–2011.

3. Results

Figure 1 presents the horizontal distributions of pre-

diction skill of monthlymean SSTs in the tropics inHCST_

CFSv2L_nudg for the lead times from 0 to 3 months. As

expected, the prediction skill over the whole tropics de-

creases as the lead time increases. Specifically, while the

correlation skill is above 0.7 over most regions at 0-month

lead (Fig. 1a), it drops to below 0.7 over all regions except

the central and eastern Pacific at 3-month lead (Fig. 1d). Of

particular interest to us is the considerable spatial vari-

ability in the SST prediction skill, with higher skill in the

tropical Pacific than in the other two tropical ocean basins.

The spatial contrast in SST skill is present as early as at

0-month lead and becomes increasingly pronounced at

longer leads. While at 0-month lead prediction skill is ap-

proximately 0.9 in the central and eastern Pacific and ap-

proximately 0.8 in the tropical Indian and Atlantic Ocean

basins (Fig. 1a), it is 0.7–0.8 versus about 0.5 at 3-month lead

(Fig. 1d).We note that the contrast in prediction skill is not

due to differences in the subsurface ocean observing sys-

tems among ocean basins as no subsurface ocean obser-

vations were used for inferring initial ocean states.

The spatial variability of SST prediction skill is a

common feature in other forecast systems, including

those using the sophisticated initialization scheme as-

similating subsurface ocean observations (e.g., Xue et al.

2013; Chen et al. 2015). Previous studies usually attrib-

uted the low skill, for example, in the tropical Atlantic,

to large model biases (e.g., Huang et al. 2007) and sig-

nificant uncertainties in the ocean initializations (e.g.,

Zhu et al. 2012b). Alternatively, it is also possible that

the spatial variability in skill is an inherent property of

the climate system. In the following analysis, we dem-

onstrate that it is indeed so.

We first demonstrate that regions with larger SST

prediction skill tend to coincide with regions where the

dynamical air–sea coupling (or Bjerknes feedback) is

also stronger. Todelineate the regionswhere thedynamical

air–sea coupling is strong, we rely on the analysis of

simulations in which model-simulated SSTs are nudged

to observations during their integration (e.g., Wang

et al. 2013; Kumar et al. 2014).

Over the regions with strong air–sea coupling, the

inclusion of observed SST information results in a re-

alistic simulation of surface winds, which in turn also

generates the observed evolution in subsurface ocean

temperature (or thermocline variability; Kumar et al.

2014). ENSO is one such phenomenon with a strong

dynamical coupling, which is well substantiated by the

success of the Cane–Zebiak model (Zebiak and Cane

1987) that encapsulates various aspects of the funda-

mental dynamics of coupled air–sea interactions. The

SST forced simulations, therefore, allow us to infer regions

with strong air–sea coupling either from a comparison of

the simulated surface wind and subsurface ocean vari-

ability or based on a comparison of some measure of

coupling with their observational counterpart.

A common way to demonstrate ocean–atmospheric

coupling is to regress interannual variability in SST with

surface wind. In the case of variability associated with

ENSO this can be done based on regression of the

monthly mean Niño-3.4 SST index with the monthly

mean surface winds. This regression for observations

and SST nudged simulation is compared in Fig. 2. We

recall that in the SST nudged simulation the only ob-

served information is SSTs, and the variability in surface

winds is generated internally by model simulations. The

spatial structure of the regression between monthly

mean variability in the Niño-3.4 SST and 10-m winds in

observations (Fig. 2a) has a close resemblance with that

in the model simulations (Fig. 2b). In the equatorial

tropical Pacific associated with positive Niño-3.4 SST

anomalies are easterly surface winds near and west of

the date line. This feature is a consequence of above

normal Niño-3.4 SST that leads to positive precipitation

anomalies and low-level convergence. There are also

similarities in regression patterns over other ocean

basins: a wave train–like structure in northern and

southern oceans and westerly winds anomalies over the

eastern Indian Ocean. These patterns are part of a

global response of the atmosphere to ENSO (e.g.,

Trenberth et al. 1998).

To further demonstrate the time coherency in surface

winds simulated from the specification of SSTs via

ocean–atmosphere coupled interactions in the model

versus those in observations, time–longitude sections of

the monthly mean surface winds along the equator in
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observations and model simulations are shown in Fig. 3.

This analysis does not restrict itself to the coupled air–sea

interactions associated with Niño-3.4 SSTs alone. The

analysis indicates that over certain oceanic regions along

the equator, there is a good correspondence in observed

and model simulated surface winds. Such regions in-

clude the equatorial tropical Pacific and eastern Indian

Ocean, delineating the regions over which interan-

nual variability is strongly influenced by coupled ocean–

atmosphere interactions.

The surface winds resulting from the specification of

SSTs also generate the subsurface ocean variability. This

is verified from the analysis of time–longitude compar-

ison of simulated and observed depth of the 208C iso-

therm (D20) at the equator (Fig. 4). In the equatorial

tropical Pacific, the temporal evolution of the observed

D20 anomalies associated with ENSO is well replicated

in the model simulations with SST nudging. As the in-

terannual variability in D20 in other ocean basins is

not as strong as in the equatorial tropical Pacific, the

correspondence between subsurface ocean evolution

between observations and model simulations is better

discerned from the analysis of the heat content variability

in the upper 300m of the ocean (HCA).

By showing the simulation skill of HCA in the SST-

nudging simulation, the strength of ocean–atmosphere

coupling in the tropics is further compared (Fig. 5). It

is seen that the highest simulation skill is present in

the tropical Pacific with correlations above 0.6 within the

equatorial waveguide, a region that corresponds to the

strongest dynamical air–sea coupling associated with

ENSO. We note that the high simulation skill for

HCA is not an artifact of specification of SSTs, and that

strong air–sea coupling is a necessary condition to

communicate the influence of SSTs to deeper ocean via

the generation of required surface winds (Kumar et al.

2017).

In the tropical Indian Ocean, the simulation skill of

HCA is smaller than that in the tropical Pacific, featured

by relatively high correlations (.0.4) in the tropical

southwestern Indian Ocean, and in the eastern basins

with a nearly symmetrical structure about the equator.

These spatial distributions are reminiscent of the spatial

structure of HCA associated with the leading mode of

interannual variability of coupled ocean and atmo-

spheric system in the tropical Indian Ocean (Fig. 1 of

Huang and Kinter 2002). In the tropical Atlantic, the

simulation skill of HCA is the smallest, and the rela-

tively high correlations (;0.3) appear within the equa-

torial waveguide as well, and correspond to the

dynamical air–sea coupling associated with the Atlantic

Niño (Xie and Carton 2004).

From the analyses of the coupled model simulations

where SSTs are nudged to the observed evolution, re-

gions of strong ocean–atmosphere coupling can thus be

discerned. The point to note is that the regions with

strong ocean–atmosphere coupling also tend to coincide

with regions where skill of SST prediction is also high.

Overall, the distribution of the HCA simulation skill

(i.e., the strength of ocean–atmosphere coupling) is

consistent with the SST prediction skill, which is highest

in the tropical Pacific and in the eastern Indian Ocean.

SST prediction skill is lower in the Atlantic (with the

exception in the northern tropical Atlantic, reasons for

which will be discussed latter) and other regions of the

Indian Ocean.

An alternate way to understand the spatial variations in

SST prediction skill is to compare its spatial distribution

with regime difference in ocean–atmosphere interactions,

delineating when ocean drives the overlying atmosphere

or atmosphere drives the underlying ocean. The spatial

distribution of such regimes can be differentiated from

the analysis of simultaneous correlation between SST

and precipitation (SST–P; Kumar et al. 2013; Wu and

FIG. 2. Regression coefficient of 10-m zonal wind vs Niño-3.4
SST index (m s21 8C21) in (a) observations (CFSR winds and

OISST) and (b) CFSv2L_nudg. Correlation is calculated regardless

of season during 1982–2010.
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Kirtman 2007). Over the regions where ocean drives the

atmosphere (regime I), the correlation between in-

terannual variability of SST and precipitation tends to

be a large positive. This is because warmer (cooler) SST

anomalies generate more (less) convective precipitation,

which results in a positive SST–P correlation. Further,

because of longer time scales associated with oceanic

variability, positive correlations are also sustained over a

longer period.

In contrast, over the regions where atmosphere drives

the ocean (regime II), larger precipitation is associated

with more clouds and with less shortwave radiation

reaching the ocean surface, and further, with stronger

surface winds over the ocean resulting in stronger latent

heat release from the ocean. Both processes cool the

SST. Over such regions, negative SST–P correlation

occurs. Because the atmospheric variability is on a faster

time scale, negative correlations are not sustained over a

long period (and therefore have a smaller fingerprint on

monthly mean variability) and tend to have smaller

values. A more detailed discussion about such regimes

can be found in Kumar et al. (2013).

Figure 6 presents the spatial distribution of SST–P

correlation in the tropics. It is seen that relatively strong

positive SST–P correlations occur in the equatorial

oceans, and weak or even negative SST–P correlations

occur in the off-equatorial oceans. Also, among the

three tropical oceans, the SST–P correlations in the

FIG. 3. The 10-m zonal wind anomaly at the equator (m s21) in (a) observations (CFSR) and

(b) CFSv2L_nudg (ensemble mean). In (b), the black contours (contour interval is 2m s21)

represent the ensemble spread of six CFSv2L_nudg integrations.
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equatorial Pacific are the highest. The spatial variability

in the SST–P correlation generally agrees with the SST

skill distribution in Fig. 1. Overall, the SST prediction

skill is generally high (low) over the regions where ocean

forces the atmosphere (atmosphere forces the ocean).

The regions where coupled ocean–atmosphere cou-

pling is prominent and the regions where local SST–P

correlation is a large positive are not independent.

There is a physical linkage between the two. Coupled

ocean–atmosphere interactions provide the following

causal link: SST anomalies force the precipitation, which

in turn forces the low-level winds. Low-level winds, by

influencing subsurface temperature anomalies along

the thermocline, then sustain (or reinforce) the SST

anomalies, and thereby provide a long-time-scale

memory. This chain of physical events responsible

for coupled air–sea interaction, therefore, supports

large positive SST–P correlations as well. The Cane–

Zebiak model (Zebiak and Cane 1987) encapsulates

the key elements of coupling process among SST,

precipitation, surface winds, and subsurface ocean

memory (or thermocline variability) and has been

successful in providing skillful SST predictions despite

its simplicity.

It is also noted that there are few exceptions that

cannot be explained by the above processes. For

FIG. 4. Thermocline anomaly at the equator (m) in (a) observations (GODAS) and

(b) CFSv2L_nudg (ensemble mean). The depth of the thermocline is derived based on D20. In

(b), the black contours (contour interval is 15m) represent the ensemble spread of six CFSv2L_

nudg integrations.
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example, in the northern tropical Atlantic, SST pre-

diction skill is moderately high (Fig. 1), but the local

dynamical coupling is relatively weak (Fig. 3). Previous

studies (e.g., Hu and Huang 2007) have suggested that

the prediction skill in this region is related to the remote

forcing of ENSO.A large portion of SST variability over

this region can be explained by the thermodynamical

forcing of atmosphere, which is linked with ENSO (e.g.,

Huang et al. 2002). This remote forcing process is dif-

ferent from the reddening of stochastic atmospheric

forcing (Frankignoul and Hasselmann 1977) and has

long-lead predictability because of ENSO. Further-

more, the thermodynamical process means a decoupling

between the mixed layer SST and the thermocline fluc-

tuations in the region, which also explains the low HCA

simulation skill in the SST-nudging simulations (Fig. 6).

Kumar et al. (2013) differentiated such regions as regime

III of ocean–atmospheric interactions.

Regions with coupled ocean–atmosphere interactions,

and regions where local SST and precipitation correlation

is positive and large, are also regions that have longer time

scales for SST variability. Regions where SST variability is

determined by the atmospheric variability, on the other

hand, are associated with variability on faster time scales.

This spatial contrast in time scale of SST variability is re-

flected in the characteristic persistence time scale of SSTs.

Persistence can be defined in terms of autocorrelation.

Because of the large thermal inertia of the ocean, SST

anomalies generally have high persistence (Fig. 7).

However, spatial inhomogeneity in persistence is also

evident, with the SST anomalies being more persistent

in the tropical Pacific than in the tropical Indian and

Atlantic Oceans. Also, the SST anomalies in the northern

tropical Atlantic have fairly high persistence. The spatial

distribution of autocorrelation resembles well the spatial

patterns of high correlation in HCA, and with the re-

gions of large positive local correlation in SST and pre-

cipitation. For longer lead times, the autocorrelation

drops; however, its spatial contrast remains. The spatial

contrast in persistence is reflected well in the spatial

variability in the skill of SST predictions, and it further

supports the reasoning that the spatial variability in skill

is due to the contrast in the characteristics of ocean–

atmosphere interactions over different oceanic regions.

4. Conclusions and discussion

Dynamical seasonal predictions, no matter whether

they apply simple ocean initialization schemes (e.g.,

Luo et al. 2005; Zhu et al. 2017) or a sophisticated

FIG. 5. Distribution of anomaly correlations between the

GODAS-analyzed upper-ocean 300-m heat content anomalies and

those derived by CFSv2L_nudg. Correlation is calculated regard-

less of season during 1982–2010.

FIG. 6. Distribution of anomaly correlations between the SST

and precipitation anomalies in observations. Correlation is calcu-

lated regardless of season during 1982–2010.

FIG. 7. As in Fig. 1, but for persistence predicted SSTA at lead times of (a) 1, (b) 2, (c) 3, and (d) 4 months.
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initialization schemes with the assimilation of sub-

surface ocean observations (e.g., Xue et al. 2013; Chen

et al. 2015), have considerable spatial differences in skill

in the prediction of SSTs. Over the tropics, for example,

models clearly have higher SST prediction skill in the

equatorial Pacific Ocean than in the Atlantic and Indian

Oceans. One explanation for the spatial variability in

skill could be that it reflects larger forecast errors in the

tropical Atlantic and Indian Oceans due to either re-

gional variations in the ocean observing system or large

model biases that have regional characteristics.

In this paper, however, we argued that the spatial

variability in SST skill is a manifestation of the inherent

property of nature, specifically regional variations in the

characteristics of ocean–atmosphere interactions. The

spatial variability of prediction skill corresponds well

with the regions where the dynamical air–sea coupling

(or Bjerknes feedback) is stronger. Such regions were

identified based on coupled simulations where forecast

SSTs were nudged to observations. Furthermore, the

spatial variability of SST prediction skill is also consis-

tent with the regime difference based on whether ocean

drives the atmosphere or atmosphere drives the ocean

(and which can be differentiated based on local SST–P

correlations). In general, the SST prediction skill is high

(low) over the regions where ocean forces the atmo-

sphere (atmosphere forces the ocean). The analysis pre-

sented in the paper goes beyond merely linking the

spatial variability in prediction skill of SSTs to the regions

where either the SST persistence is high or SST variability

on interannual time scales itself is high (not shown). We

also provide a physical basis as to why spatial variations

in persistence, or in the amplitude of SST variability,

themselves exist. The physical basis relates to spatial

variations in the strength of air–sea coupling or to re-

gimes where ocean forces the atmosphere or vice versa

(which themselves are also interconnected).

It should be noted that this study is not to argue that

the limits of SST predictability have been achieved. In

contrast, we believe that further improvements in SST

predictions could be achieved through efforts put

into improving the observing system, the initialization

methods, and the coupled models. For example, an SST

skill comparison between persistence (Fig. 7) and model

(Fig. 1) shows that the region of high skill in the Pacific is

meridionally wider in persistence than inmodel. Also, at

lead times of 2 and 3 months (Figs. 1c,d and 7c,d), the

skill of persistence in the northern tropical Atlantic is

slightly higher than in model forecasts. In the far eastern

Pacific off the South American coast, the model shows

less skill than persistence. All these differences are in-

dicative of model errors (initial conditions or models),

indicating room for further improvement. However,

because the spatial contrast in SST skill is an intrinsic

property of the climate system, the spatial contrast in SST

skill may prevail in spite of further improvements in skill.
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