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ABSTRACT

Seasonal prediction skill of SSTs from coupled models has considerable spatial variations. In the tropics,
SST prediction skill in the tropical Pacific clearly exceeds prediction skill over the Atlantic and Indian Oceans.
Such skill variations can be due to spatial variations in observing system used for forecast initializations or
systematic errors in the seasonal prediction systems, or they could be a consequence of inherent properties of
the coupled ocean—atmosphere system leaving a fingerprint on the spatial structure of SST predictability. Out
of various alternatives, the spatial variability in SST prediction skill is argued to be a consequence of inherent
characteristics of climate system. This inference is supported based on the following analyses. SST prediction
skill is higher over the regions where coupled air—sea interactions (or Bjerknes feedback) are inferred to be
stronger. Coupled air-sea interactions, and the longer time scales associated with them, imprint longer
memory and thereby support higher SST prediction skill. The spatial variability of SST prediction skill is also
consistent with differences in the ocean—atmosphere interaction regimes that distinguish between whether
ocean drives the atmosphere or atmosphere drives the ocean. Regions of high SST prediction skill generally
coincide with regions where ocean forces the atmosphere. Such regimes correspond to regions where oceanic
variability is on longer time scales compared to regions where atmosphere forces the ocean. Such regional
differences in the spatial characteristics of ocean—atmosphere interactions, in turn, also govern the spatial
variations in SST skill, making spatial variations in skill an intrinsic property of the climate system and not an
artifact of the observing system or model biases.

1. Introduction those SSTs, such as in the tropical Indian Ocean (e.g., Luo
et al. 2007; Zhu et al. 2015) and tropical Atlantic Ocean
(e.g., Hu and Huang 2007) and the extratropical oceans,
including the North Atlantic (e.g., Hu et al. 2013), the
North Pacific (e.g., Hu et al. 2014), and the southern
subtropical Pacific (e.g., Guan et al. 2014), has also been
documented.

Across different ocean basins, however, seasonal
prediction systems demonstrate considerably different
skill in the prediction of SSTs. Over the tropics, pre-
diction skill of SSTs is clearly higher in the equatorial
Pacific than in the Atlantic and Indian Oceans (Fig. 1).
The underlying reasons of the spatial variability in SST
skill are yet to be well understood: Is the regional con-
trast in prediction skill an intrinsic property of the cli-
mate system, or an artifact of the present state of the
observing and prediction systems? It is possible that the
Corresponding author: Dr. Jieshun Zhu, jieshun.zhu@noaa.gov  lower skill in the tropical Atlantic and Indian Oceansis a

Sea surface temperatures (SSTs) are an important
factor influencing climate variations over the globe. SST
variability in the tropical Pacific associated with El
Nifio—Southern Oscillation (ENSO) influences weather
and climate worldwide. Since the first dynamical pre-
dictions of SSTs associated with ENSO variability three
decades ago (Cane et al. 1986), the ability of dynamical
models to predict ENSO has improved significantly, and
ENSO SSTs are now successfully predicted several
seasons ahead (e.g., Ji et al. 1994; Zhang et al. 2003;
Chen et al. 2004; Jin et al. 2008; Kirtman and Min 2009;
Zhu et al. 2012a; Xue et al. 2013). In addition, dynamical
seasonal predictions based on coupled models also
predict SSTs in other ocean basins, and skill in predicting
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SST Predictive Skill in CFSv2L_nudg (1982—-2010): Correlation
(b) at 1—month lead
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FIG. 1. Distribution of anomaly correlations between observed and predicted SST anomalies by HCST_CFSv2L _
nudg at lead times of (a) 0, (b) 1, (¢) 2, and (d) 3 months. The hindcasts start from January, April, July, and October

initial conditions during 1982-2010.

consequence of larger forecast errors due to 1) lack of
observations needed to adequately initialize the state of
the ocean or 2) model biases that could either influence the
ingest of observational data or influence the utility of the
assimilated observational data early during the forecast
(e.g., resulting from initial shocks).

In this study, we also investigate another possibility
for the spatial variability in SST prediction skill. We
propose that the spatial variability in skill represents an
inherent property of the climate system. The reasons for
the spatial variability in skill are imbedded in the regional
variations of 1) coupled ocean—atmosphere interactions
and 2) regimes of ocean—atmosphere interactions. Re-
gional characteristics in these two properties of the
ocean—atmosphere system then also govern the inherent
predictability of SSTs and impart their signature as re-
gional variations in the prediction skill. The rest of the
paper is arranged as follows. The model, experimental
design, and datasets are described in the next section.
Section 3 presents our analyses. A summary and discussion
are given in section 4.

2. Model, experiments, and datasets

The model (referred to as CFSv2L) used in this study
is a variant of the NCEP CFSv2 (Saha et al. 2014) with
lower horizontal resolutions in both atmospheric and
oceanic components. In CFSv2L, the ocean model is the
GFDL MOM version 4, which is configured for the
global ocean with a horizontal grid of 1° X 1° poleward
of 30°S and 30°N and meridional resolution increasing
gradually to 0.33° between 10°S and 10°N. The vertical
coordinate is geopotential height z with 40 levels (27
of them in the upper 400 m), with maximum depth of
approximately 4.5 km. The atmospheric model of CFSv2L
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is the Global Forecast System, which has horizontal res-
olution at spectral T62 truncation, and 64 vertical levels
in a hybrid sigma—pressure coordinate. The oceanic and
atmospheric components of CFSv2L exchange surface
momentum, heat, and freshwater fluxes, as well as SSTs,
every 60 min.

The spatial variability in SST skill is documented with
the hindcast experiments described in Zhu et al. (2017).
In the hindcasts, CFSv2L is initialized by a simple
scheme in which SST is the only observed information
applied to derive ocean initial states and no subsurface
ocean observations are used. Specifically, six CFSv2L
nudging integrations, differing by their initial conditions,
were conducted with model forecast SSTs nudged to the
observational counterpart. At the start of integrations,
six initial conditions differ in ocean only, and are taken
from the CFSR (Saha et al. 2010) ocean states at 0000
UTC 30 and 31 December 1980 and 1-3 January 1981,
whereas the atmospheric and land initial conditions all
use their CFSR states at 0000 UTC 1 January 1981. By
redating all the initial conditions to 1 January 1976,
six CFSv2L runs are integrated forward with model
predicted SSTs nudged to the observed daily SSTs. The
restoring time scale is chosen as 3.3 days, following our
previous work with CFSvl (Wang et al. 2013; Kumar
et al. 2014). The observed daily SSTs are interpolated
from the monthly National Oceanic and Atmospheric
Administration (NOAA) Optimum Interpolation SST
(OISST) version 2 (Reynolds et al. 2002) SSTs for the
period after 1982, and from the ERSST.v3 (Smith et al.
2008) before 1982. The SST-nudged CFSv2L integra-
tions are referred to as CFSv2L_nudg.

From the restart files saved during CFSv2L_nudg,
hindcasts are next conducted starting from the first day of
each January, April, July, and October during 1982-2010
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and last for eight months. The set of hindcasts is referred
to as HCST_CFSv2L_nudg. The difference between
CFSv2L_nudg and HCST_CFSv2L_nudg is that, whereas
in the former observed SSTs are used throughout the
integrations, for the latter the observed SST information
is not used beyond the initial time.

The predicted SSTs are validated against the analyzed
(observed) SSTs from OISSTv2 (Reynolds et al. 2002)
and document the spatial variability in skill in predicting
SSTs. Other monthly datasets used for diagnostics in-
clude precipitation data from NOAA'’s Climate Pre-
diction Center (CPC) Merged Analysis of Precipitation
(CMAP) (Xie and Arkin 1997), 10-m zonal winds from
the CFSR (Saha et al. 2010), and the subsurface ocean
fields from the NCEP Global Ocean Data Assimilation
System (GODAS; Behringer 2007). All diagnostics are
conducted over 1982-2011.

3. Results

Figure 1 presents the horizontal distributions of pre-
diction skill of monthly mean SSTs in the tropics in HCST _
CFSv2L_nudg for the lead times from O to 3 months. As
expected, the prediction skill over the whole tropics de-
creases as the lead time increases. Specifically, while the
correlation skill is above 0.7 over most regions at 0-month
lead (Fig. 1a), it drops to below 0.7 over all regions except
the central and eastern Pacific at 3-month lead (Fig. 1d). Of
particular interest to us is the considerable spatial vari-
ability in the SST prediction skill, with higher skill in the
tropical Pacific than in the other two tropical ocean basins.
The spatial contrast in SST skill is present as early as at
0-month lead and becomes increasingly pronounced at
longer leads. While at O-month lead prediction skill is ap-
proximately 0.9 in the central and eastern Pacific and ap-
proximately 0.8 in the tropical Indian and Atlantic Ocean
basins (Fig. 1a), it is 0.7-0.8 versus about 0.5 at 3-month lead
(Fig. 1d). We note that the contrast in prediction skill is not
due to differences in the subsurface ocean observing sys-
tems among ocean basins as no subsurface ocean obser-
vations were used for inferring initial ocean states.

The spatial variability of SST prediction skill is a
common feature in other forecast systems, including
those using the sophisticated initialization scheme as-
similating subsurface ocean observations (e.g., Xue et al.
2013; Chen et al. 2015). Previous studies usually attrib-
uted the low skill, for example, in the tropical Atlantic,
to large model biases (e.g., Huang et al. 2007) and sig-
nificant uncertainties in the ocean initializations (e.g.,
Zhu et al. 2012b). Alternatively, it is also possible that
the spatial variability in skill is an inherent property of
the climate system. In the following analysis, we dem-
onstrate that it is indeed so.
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We first demonstrate that regions with larger SST
prediction skill tend to coincide with regions where the
dynamical air-sea coupling (or Bjerknes feedback) is
also stronger. To delineate the regions where the dynamical
air-sea coupling is strong, we rely on the analysis of
simulations in which model-simulated SSTs are nudged
to observations during their integration (e.g., Wang
et al. 2013; Kumar et al. 2014).

Over the regions with strong air-sea coupling, the
inclusion of observed SST information results in a re-
alistic simulation of surface winds, which in turn also
generates the observed evolution in subsurface ocean
temperature (or thermocline variability; Kumar et al.
2014). ENSO is one such phenomenon with a strong
dynamical coupling, which is well substantiated by the
success of the Cane-Zebiak model (Zebiak and Cane
1987) that encapsulates various aspects of the funda-
mental dynamics of coupled air-sea interactions. The
SST forced simulations, therefore, allow us to infer regions
with strong air-sea coupling either from a comparison of
the simulated surface wind and subsurface ocean vari-
ability or based on a comparison of some measure of
coupling with their observational counterpart.

A common way to demonstrate ocean—atmospheric
coupling is to regress interannual variability in SST with
surface wind. In the case of variability associated with
ENSO this can be done based on regression of the
monthly mean Nifio-3.4 SST index with the monthly
mean surface winds. This regression for observations
and SST nudged simulation is compared in Fig. 2. We
recall that in the SST nudged simulation the only ob-
served information is SSTs, and the variability in surface
winds is generated internally by model simulations. The
spatial structure of the regression between monthly
mean variability in the Nifio-3.4 SST and 10-m winds in
observations (Fig. 2a) has a close resemblance with that
in the model simulations (Fig. 2b). In the equatorial
tropical Pacific associated with positive Nifio-3.4 SST
anomalies are easterly surface winds near and west of
the date line. This feature is a consequence of above
normal Nifio-3.4 SST that leads to positive precipitation
anomalies and low-level convergence. There are also
similarities in regression patterns over other ocean
basins: a wave train-like structure in northern and
southern oceans and westerly winds anomalies over the
eastern Indian Ocean. These patterns are part of a
global response of the atmosphere to ENSO (e.g.,
Trenberth et al. 1998).

To further demonstrate the time coherency in surface
winds simulated from the specification of SSTs via
ocean—atmosphere coupled interactions in the model
versus those in observations, time-longitude sections of
the monthly mean surface winds along the equator in
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FIG. 2. Regression coefficient of 10-m zonal wind vs Nifio-3.4
SST index (ms '°C™!) in (a) observations (CFSR winds and
OISST) and (b) CFSv2L_nudg. Correlation is calculated regardless
of season during 1982-2010.

observations and model simulations are shown in Fig. 3.
This analysis does not restrict itself to the coupled air-sea
interactions associated with Nifio-3.4 SSTs alone. The
analysis indicates that over certain oceanic regions along
the equator, there is a good correspondence in observed
and model simulated surface winds. Such regions in-
clude the equatorial tropical Pacific and eastern Indian
Ocean, delineating the regions over which interan-
nual variability is strongly influenced by coupled ocean—
atmosphere interactions.

The surface winds resulting from the specification of
SSTs also generate the subsurface ocean variability. This
is verified from the analysis of time-longitude compar-
ison of simulated and observed depth of the 20°C iso-
therm (D20) at the equator (Fig. 4). In the equatorial
tropical Pacific, the temporal evolution of the observed
D20 anomalies associated with ENSO is well replicated
in the model simulations with SST nudging. As the in-
terannual variability in D20 in other ocean basins is
not as strong as in the equatorial tropical Pacific, the
correspondence between subsurface ocean evolution
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between observations and model simulations is better
discerned from the analysis of the heat content variability
in the upper 300 m of the ocean (HCA).

By showing the simulation skill of HCA in the SST-
nudging simulation, the strength of ocean—-atmosphere
coupling in the tropics is further compared (Fig. 5). It
is seen that the highest simulation skill is present in
the tropical Pacific with correlations above 0.6 within the
equatorial waveguide, a region that corresponds to the
strongest dynamical air-sea coupling associated with
ENSO. We note that the high simulation skill for
HCA is not an artifact of specification of SSTs, and that
strong air-sea coupling is a necessary condition to
communicate the influence of SSTs to deeper ocean via
the generation of required surface winds (Kumar et al.
2017).

In the tropical Indian Ocean, the simulation skill of
HCA is smaller than that in the tropical Pacific, featured
by relatively high correlations (>0.4) in the tropical
southwestern Indian Ocean, and in the eastern basins
with a nearly symmetrical structure about the equator.
These spatial distributions are reminiscent of the spatial
structure of HCA associated with the leading mode of
interannual variability of coupled ocean and atmo-
spheric system in the tropical Indian Ocean (Fig. 1 of
Huang and Kinter 2002). In the tropical Atlantic, the
simulation skill of HCA is the smallest, and the rela-
tively high correlations (~0.3) appear within the equa-
torial waveguide as well, and correspond to the
dynamical air-sea coupling associated with the Atlantic
Nifio (Xie and Carton 2004).

From the analyses of the coupled model simulations
where SSTs are nudged to the observed evolution, re-
gions of strong ocean—-atmosphere coupling can thus be
discerned. The point to note is that the regions with
strong ocean—atmosphere coupling also tend to coincide
with regions where skill of SST prediction is also high.
Overall, the distribution of the HCA simulation skill
(i.e., the strength of ocean—atmosphere coupling) is
consistent with the SST prediction skill, which is highest
in the tropical Pacific and in the eastern Indian Ocean.
SST prediction skill is lower in the Atlantic (with the
exception in the northern tropical Atlantic, reasons for
which will be discussed latter) and other regions of the
Indian Ocean.

An alternate way to understand the spatial variations in
SST prediction skill is to compare its spatial distribution
with regime difference in ocean—atmosphere interactions,
delineating when ocean drives the overlying atmosphere
or atmosphere drives the underlying ocean. The spatial
distribution of such regimes can be differentiated from
the analysis of simultaneous correlation between SST
and precipitation (SST-P; Kumar et al. 2013; Wu and
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FIG. 3. The 10-m zonal wind anomaly at the equator (ms ™) in (a) observations (CFSR) and
(b) CFSv2L_nudg (ensemble mean). In (b), the black contours (contour interval is 2ms ™)
represent the ensemble spread of six CFSv2L_nudg integrations.

Kirtman 2007). Over the regions where ocean drives the
atmosphere (regime I), the correlation between in-
terannual variability of SST and precipitation tends to
be a large positive. This is because warmer (cooler) SST
anomalies generate more (less) convective precipitation,
which results in a positive SST-P correlation. Further,
because of longer time scales associated with oceanic
variability, positive correlations are also sustained over a
longer period.

In contrast, over the regions where atmosphere drives
the ocean (regime II), larger precipitation is associated
with more clouds and with less shortwave radiation
reaching the ocean surface, and further, with stronger
surface winds over the ocean resulting in stronger latent
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heat release from the ocean. Both processes cool the
SST. Over such regions, negative SST-P correlation
occurs. Because the atmospheric variability is on a faster
time scale, negative correlations are not sustained over a
long period (and therefore have a smaller fingerprint on
monthly mean variability) and tend to have smaller
values. A more detailed discussion about such regimes
can be found in Kumar et al. (2013).

Figure 6 presents the spatial distribution of SST-P
correlation in the tropics. It is seen that relatively strong
positive SST-P correlations occur in the equatorial
oceans, and weak or even negative SST-P correlations
occur in the off-equatorial oceans. Also, among the
three tropical oceans, the SST-P correlations in the
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FIG. 4. Thermocline anomaly at the equator (m) in (a) observations (GODAS) and
(b) CFSv2L_nudg (ensemble mean). The depth of the thermocline is derived based on D20. In
(b), the black contours (contour interval is 15 m) represent the ensemble spread of six CFSv2L_

nudg integrations.

equatorial Pacific are the highest. The spatial variability
in the SST-P correlation generally agrees with the SST
skill distribution in Fig. 1. Overall, the SST prediction
skill is generally high (low) over the regions where ocean
forces the atmosphere (atmosphere forces the ocean).
The regions where coupled ocean—atmosphere cou-
pling is prominent and the regions where local SST-P
correlation is a large positive are not independent.
There is a physical linkage between the two. Coupled
ocean-atmosphere interactions provide the following
causal link: SST anomalies force the precipitation, which
in turn forces the low-level winds. Low-level winds, by
influencing subsurface temperature anomalies along
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the thermocline, then sustain (or reinforce) the SST
anomalies, and thereby provide a long-time-scale
memory. This chain of physical events responsible
for coupled air-sea interaction, therefore, supports
large positive SST—P correlations as well. The Cane—
Zebiak model (Zebiak and Cane 1987) encapsulates
the key elements of coupling process among SST,
precipitation, surface winds, and subsurface ocean
memory (or thermocline variability) and has been
successful in providing skillful SST predictions despite
its simplicity.

It is also noted that there are few exceptions that
cannot be explained by the above processes. For
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F1G. 5. Distribution of anomaly correlations between the
GODAS-analyzed upper-ocean 300-m heat content anomalies and
those derived by CFSv2L_nudg. Correlation is calculated regard-
less of season during 1982-2010.

example, in the northern tropical Atlantic, SST pre-
diction skill is moderately high (Fig. 1), but the local
dynamical coupling is relatively weak (Fig. 3). Previous
studies (e.g., Hu and Huang 2007) have suggested that
the prediction skill in this region is related to the remote
forcing of ENSO. A large portion of SST variability over
this region can be explained by the thermodynamical
forcing of atmosphere, which is linked with ENSO (e.g.,
Huang et al. 2002). This remote forcing process is dif-
ferent from the reddening of stochastic atmospheric
forcing (Frankignoul and Hasselmann 1977) and has
long-lead predictability because of ENSO. Further-
more, the thermodynamical process means a decoupling
between the mixed layer SST and the thermocline fluc-
tuations in the region, which also explains the low HCA
simulation skill in the SST-nudging simulations (Fig. 6).
Kumar et al. (2013) differentiated such regions as regime
IIT of ocean—atmospheric interactions.

Regions with coupled ocean—atmosphere interactions,
and regions where local SST and precipitation correlation
is positive and large, are also regions that have longer time
scales for SST variability. Regions where SST variability is
determined by the atmospheric variability, on the other
hand, are associated with variability on faster time scales.

FIG. 6. Distribution of anomaly correlations between the SST
and precipitation anomalies in observations. Correlation is calcu-
lated regardless of season during 1982-2010.

This spatial contrast in time scale of SST variability is re-
flected in the characteristic persistence time scale of SSTs.
Persistence can be defined in terms of autocorrelation.
Because of the large thermal inertia of the ocean, SST
anomalies generally have high persistence (Fig. 7).
However, spatial inhomogeneity in persistence is also
evident, with the SST anomalies being more persistent
in the tropical Pacific than in the tropical Indian and
Atlantic Oceans. Also, the SST anomalies in the northern
tropical Atlantic have fairly high persistence. The spatial
distribution of autocorrelation resembles well the spatial
patterns of high correlation in HCA, and with the re-
gions of large positive local correlation in SST and pre-
cipitation. For longer lead times, the autocorrelation
drops; however, its spatial contrast remains. The spatial
contrast in persistence is reflected well in the spatial
variability in the skill of SST predictions, and it further
supports the reasoning that the spatial variability in skill
is due to the contrast in the characteristics of ocean—
atmosphere interactions over different oceanic regions.

4. Conclusions and discussion

Dynamical seasonal predictions, no matter whether
they apply simple ocean initialization schemes (e.g.,
Luo et al. 2005; Zhu et al. 2017) or a sophisticated

SST Skill of Persistence (1982—2010): Correlation
(b) at 2—month lead

0.3 0.4 0.5
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FIG. 7. As in Fig. 1, but for persistence predicted SSTA at lead times of (a) 1, (b) 2, (c) 3, and (d) 4 months.
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initialization schemes with the assimilation of sub-
surface ocean observations (e.g., Xue et al. 2013; Chen
et al. 2015), have considerable spatial differences in skill
in the prediction of SSTs. Over the tropics, for example,
models clearly have higher SST prediction skill in the
equatorial Pacific Ocean than in the Atlantic and Indian
Oceans. One explanation for the spatial variability in
skill could be that it reflects larger forecast errors in the
tropical Atlantic and Indian Oceans due to either re-
gional variations in the ocean observing system or large
model biases that have regional characteristics.

In this paper, however, we argued that the spatial
variability in SST skill is a manifestation of the inherent
property of nature, specifically regional variations in the
characteristics of ocean—atmosphere interactions. The
spatial variability of prediction skill corresponds well
with the regions where the dynamical air-sea coupling
(or Bjerknes feedback) is stronger. Such regions were
identified based on coupled simulations where forecast
SSTs were nudged to observations. Furthermore, the
spatial variability of SST prediction skill is also consis-
tent with the regime difference based on whether ocean
drives the atmosphere or atmosphere drives the ocean
(and which can be differentiated based on local SST-P
correlations). In general, the SST prediction skill is high
(low) over the regions where ocean forces the atmo-
sphere (atmosphere forces the ocean). The analysis pre-
sented in the paper goes beyond merely linking the
spatial variability in prediction skill of SSTs to the regions
where either the SST persistence is high or SST variability
on interannual time scales itself is high (not shown). We
also provide a physical basis as to why spatial variations
in persistence, or in the amplitude of SST variability,
themselves exist. The physical basis relates to spatial
variations in the strength of air-sea coupling or to re-
gimes where ocean forces the atmosphere or vice versa
(which themselves are also interconnected).

It should be noted that this study is not to argue that
the limits of SST predictability have been achieved. In
contrast, we believe that further improvements in SST
predictions could be achieved through efforts put
into improving the observing system, the initialization
methods, and the coupled models. For example, an SST
skill comparison between persistence (Fig. 7) and model
(Fig. 1) shows that the region of high skill in the Pacific is
meridionally wider in persistence than in model. Also, at
lead times of 2 and 3 months (Figs. 1c,d and 7c,d), the
skill of persistence in the northern tropical Atlantic is
slightly higher than in model forecasts. In the far eastern
Pacific off the South American coast, the model shows
less skill than persistence. All these differences are in-
dicative of model errors (initial conditions or models),
indicating room for further improvement. However,
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because the spatial contrast in SST skill is an intrinsic
property of the climate system, the spatial contrast in SST
skill may prevail in spite of further improvements in skill.
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